Continuum theory for cluster morphologies of soft colloids.
نویسندگان
چکیده
We introduce a continuum description of the thermodynamics of colloids with a core-corona architecture. In the case of thick coronas, their overlap can be treated approximately by replacing the exact one-particle density distribution by a suitably shaped step profile, which provides a convenient way of modeling the spherical, columnar, lamellar, and inverted cluster morphologies predicted by numerical simulations and the more involved theories. We use the model to study monodisperse particles with the hard-core/square-shoulder pair interaction as the simplest representatives of the core-corona class. We derive approximate analytical expressions for the enthalpies of the cluster morphologies which offer a clear insight into the mechanisms at work, and we calculate the lattice spacing and the cluster size for all morphologies of the phase sequence as well as the phase-transition pressures. By comparing the results with the exact crystalline minimum-enthalpy configurations, we show that the accuracy of the theory increases with shoulder width. We discuss possible extensions of the theory that could account for the finite-temperature effects.
منابع مشابه
Two-dimensional fluid with competing interactions exhibiting microphase separation: theory for bulk and interfacial properties.
Colloidal particles that are confined to an interface such as the air-water interface are an example of a two-dimensional fluid. Such dispersions have been observed to spontaneously form cluster and stripe morphologies in certain systems with isotropic pair potentials between the particles, due to the fact that the pair interaction between the colloids has competing attraction and repulsion ove...
متن کاملFrom Lumps to Lattices: Crystallized Clots Made Simple
Using a minimal model based on the continuum theory of a 2D hard-core/square-shoulder ensemble, we reinterpret the main features of cluster mesophases formed by colloids with soft shoulder-like repulsive interactions. We rederive the lattice spacing, the binding energy and the phase diagram. We also extend the clustering criterion [Likos, C. N., et al. Phys. Rev. E, 2001, 63, 031206; Glaser, M....
متن کاملPredicting self-assembled patterns on spheres with multicomponent coatings.
Patchy colloids are promising candidates for building blocks in directed self-assembly, but large scale synthesis of colloids with controlled surface patterns remains challenging. One potential fabrication method is to self-assemble the surface patterns themselves, allowing complex morphologies to organize spontaneously. For this approach to be competitive, prediction and control of the pattern...
متن کاملLattice density functional for colloid-polymer mixtures: comparison of two fundamental measure theories.
We consider a binary mixture of colloid and polymer particles with positions on a simple cubic lattice. Colloids exclude both colloids and polymers from nearest neighbor sites. Polymers are treated as effective particles that are mutually noninteracting, but exclude colloids from neighboring sites; this is a discrete version of the (continuum) Asakura-Oosawa-Vrij model. Two alternative density ...
متن کاملEquilibrium cluster fluids: pair interactions via inverse design.
Inverse methods of statistical mechanics are becoming productive tools in the design of materials with specific microstructures or properties. While initial studies have focused on solid-state design targets (e.g., assembly of colloidal superlattices), one can alternatively design fluid states with desired morphologies. This work addresses the latter and demonstrates how a simple iterative Bolt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 115 22 شماره
صفحات -
تاریخ انتشار 2011